3.3.65 \(\int \frac {\cos (c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\sqrt {b \cos (c+d x)}} \, dx\) [265]

Optimal. Leaf size=150 \[ \frac {2 (5 A+3 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d} \]

[Out]

2/5*C*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/b^2/d+2/3*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(si
n(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)+2/3*B*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/b/d+2/
5*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c
))^(1/2)/b/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.180, Rules used = {16, 3102, 2827, 2721, 2719, 2715, 2720} \begin {gather*} \frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 b d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b^2 d}+\frac {2 B \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[b*Cos[c + d*x]],x]

[Out]

(2*(5*A + 3*C)*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*b*d*Sqrt[Cos[c + d*x]]) + (2*B*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*B*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*b*d)
+ (2*C*(b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*b^2*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {b \cos (c+d x)}} \, dx &=\frac {\int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx}{b}\\ &=\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}+\frac {2 \int \sqrt {b \cos (c+d x)} \left (\frac {1}{2} b (5 A+3 C)+\frac {5}{2} b B \cos (c+d x)\right ) \, dx}{5 b^2}\\ &=\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}+\frac {B \int (b \cos (c+d x))^{3/2} \, dx}{b^2}+\frac {(5 A+3 C) \int \sqrt {b \cos (c+d x)} \, dx}{5 b}\\ &=\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}+\frac {1}{3} B \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx+\frac {\left ((5 A+3 C) \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 b \sqrt {\cos (c+d x)}}\\ &=\frac {2 (5 A+3 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 \sqrt {b \cos (c+d x)}}\\ &=\frac {2 (5 A+3 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 97, normalized size = 0.65 \begin {gather*} \frac {2 \sqrt {b \cos (c+d x)} \left (3 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sqrt {\cos (c+d x)} (5 B+3 C \cos (c+d x)) \sin (c+d x)\right )}{15 b d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[b*Cos[c + d*x]]*(3*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2] + 5*B*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c
+ d*x]]*(5*B + 3*C*Cos[c + d*x])*Sin[c + d*x]))/(15*b*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.37, size = 316, normalized size = 2.11

method result size
default \(\frac {2 \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-20 B -24 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (10 B +6 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}\) \(316\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/15*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(
-20*B-24*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(10*B+6*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+15*A*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-5*B*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*C*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*
c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 166, normalized size = 1.11 \begin {gather*} \frac {-5 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, C \cos \left (d x + c\right ) + 5 \, B\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/15*(-5*I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*B*sqrt(b)
*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-5*I*A - 3*I*C)*sqrt(b)*weierstrassZet
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(5*I*A + 3*I*C)*sqrt(b)*weiers
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*C*cos(d*x + c) + 5*B)*sqrt(
b*cos(d*x + c))*sin(d*x + c))/(b*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3065 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\cos \left (c+d\,x\right )\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________